Jordan algebras and exceptional subalgebras of the exceptional algebraE6

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primitive Subalgebras of Exceptional Lie Algebras

The object of this paper is to classify (up to inner automorphism) the primitive, maximal rank, reductive subalgebras of the (complex) exceptional Lie algebras. By primitive we mean that the subalgebras correspond to (possibly disconnected) maximal Lie subgroups. In [3], the corresponding classification for the (complex) classical Lie algebras was completed, as was the classification for the no...

متن کامل

Cubic Subfields of Exceptional Simple Jordan Algebras

Let E/k be a cubic field extension and J a simple exceptional Jordan algebra of degree 3 over k. Then £ is a reducing field of J if and only if E is isomorphic to a (maximal) subfield of some isotope of /. If k has characteristic not 2 or 3 and contains the third roots of unity then every simple exceptional Jordan division algebra of degree 3 over k contains a cyclic cubic subfield. Exceptional...

متن کامل

Jordan Gradings on Exceptional Simple Lie Algebras

Models of all the gradings on the exceptional simple Lie algebras induced by Jordan subgroups of their groups of automorphisms are provided.

متن کامل

Cubic Rings and the Exceptional Jordan Algebra

In a previous paper [EG] we described an integral structure (J, E) on the exceptional Jordan algebra of Hermitian 3 × 3 matrices over the Cayley octonions. Here we use modular forms and Niemeier’s classification of even unimodular lattices of rank 24 to further investigate J and the integral, even lattice J0 = (ZE) in J . Specifically, we study ring embeddings of totally real cubic rings A into...

متن کامل

The exceptional Jordan algebra and the matrix string

ABSTRACT A new matrix model is described, based on the exceptional Jordan algebra, J3 O . The action is cubic, as in matrix Chern-Simons theory. We describe a compactification that, we argue, reproduces, at the one loop level, an octonionic compactification of the matrix string theory in which SO(8) is broken to G2. There are 27 matrix degrees of freedom, which under Spin(8) transform as the ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1970

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1970.32.283